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Improving Automated Annotation 
of Benthic Survey Images Using 
Wide-band Fluorescence
Oscar Beijbom1,*, Tali Treibitz2, David I. Kline3, Gal Eyal4,5, Adi Khen3, Benjamin Neal6, 
Yossi Loya5, B. Greg Mitchell3 & David Kriegman1

Large-scale imaging techniques are used increasingly for ecological surveys. However, manual 
analysis can be prohibitively expensive, creating a bottleneck between collected images and desired 
data-products. This bottleneck is particularly severe for benthic surveys, where millions of images are 
obtained each year. Recent automated annotation methods may provide a solution, but reflectance 
images do not always contain sufficient information for adequate classification accuracy. In this work, 
the FluorIS, a low-cost modified consumer camera, was used to capture wide-band wide-field-of-view 
fluorescence images during a field deployment in Eilat, Israel. The fluorescence images were registered 
with standard reflectance images, and an automated annotation method based on convolutional neural 
networks was developed. Our results demonstrate a 22% reduction of classification error-rate when 
using both images types compared to only using reflectance images. The improvements were large, in 
particular, for coral reef genera Platygyra, Acropora and Millepora, where classification recall improved 
by 38%, 33%, and 41%, respectively. We conclude that convolutional neural networks can be used to 
combine reflectance and fluorescence imagery in order to significantly improve automated annotation 
accuracy and reduce the manual annotation bottleneck.

Advances in robotics, control theory, and digital imaging technology have enabled the collection of large-scale 
digital photographic data-sets for a large variety of ecological surveys1–4. However, obtaining the relevant scien-
tific data from the collected images typically requires time-consuming and expensive manual image annotation. 
Although recent automated annotation methods offer a compelling alternative to manual annotation5,6, the accu-
racy is rarely as high as that of human experts7–9. In this work we investigate whether multi-modal image chan-
nels can contribute to improved automated annotation accuracy, thereby reducing the need for manual image 
annotation and verification. Specifically, we focus on using fluorescence information, as a mode distinct from 
reflectance, for automated annotation of coral reef survey images.

Coral reefs are essential to coastal societies throughout the world, providing food, resources and income to 
over 500 million people10. In the last three decades up to 80% of coral coverage has been lost in the Caribbean11 
and up to 50% in the Indo-Pacific12,13 largely due to anthropogenic stressors including over-fishing, pollution, 
sedimentation, habitat destruction and climate change14–16. This accelerated rate of decline creates a need for rapid 
assessments of reef health in order to develop more effective management and conservation strategies17.

Currently, the most prevalent method for reef assessment is in situ digital photographic surveys. However, 
obtaining ecological data, such as percent cover of key benthic groups, from the collected images requires 
time-consuming and expensive manual image analysis, often in the form of point annotations18.

Recent advances in computer vision have enabled automated annotation of coral reef survey images6,19–21, 
offering a compelling alternative to manual annotation9. Unfortunately, automated annotation in this context 
is challenging for several reasons including: degradation of colors underwater, image distortions due to water 
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turbidity, large variability of within-class appearance, and complex boundaries and juxtaposition of different 
categories. As shown in this work, however, these difficulties can be alleviated by incorporating fluorescence 
information in the automated annotation methods.

While reef surveys are commonly conducted using underwater digital consumer reflectance cameras, several 
other instruments have been utilized to study coral reef health. Multi-spectral cameras, underwater spectrome-
ters, underwater radiometers and underwater fluorometers (diving PAMs) have been previously used to quantify 
physiological parameters of coral reef organisms22. Another option is to measure fluorescence signatures which 
have been shown to contain ecologically relevant information such as level of bleaching23, recruitment22, and 
physiological state24. However, until recently, fluorescence imaging systems were limited either by resolution24, 
spatial coverage of the measurements25,26 and/or ease of operation24,25,27.

We have recently developed the FluorIS (Fluorescence Imaging System)22, a consumer camera modified for 
increased sensitivity of near-infrared wavelengths. The FluorIS can be used for underwater fluorescence imaging 
of both the green (520–630 nm), and red (630–800 nm), wide-band components of the fluorescence spectra which 
correspond to the emission spectra of green fluorescence proteins (GFPs) and chlorophyll-a, respectively. (The 
blue camera channel is not used as it overlaps with the spectrum of the blue excitation source). Its relatively low 
price, ease of operation, and wide-field-of-view (0.5 × 0.7 m2) makes FluorIS a compelling tool for reef surveys. 
We hypothesized that the information captured by FluorIS could be used as auxiliary information to improve 
automated image annotation accuracy.

To test this hypothesis we used a custom-designed framer and both a standard SLR and FluorIS camera to 
capture registered fluorescence and reflectance image pairs during a nighttime reef survey in Eilat, Red Sea Israel 
(Fig. 1). The images were then annotated by coral ecology experts at 200 random point locations as one of the ten 
dominant taxonomic categories. Several sets of analysis were then performed. First, the discriminatory informa-
tion in each image channel was compared in order to understand the relative importance of the spectral bands in 
both cameras. Second, a supervised automated annotation algorithm, based on Convolutional Neural Networks 
(CNN)28, was developed which utilized the joint textural and spectral information in the image pairs. While 
CNNs have recently shown remarkable progress on several important visual recognition tasks, such as image clas-
sification29, and segmentation30, it has not previously, to the best of our knowledge, been utilized for automated 
annotation of underwater images.

We show that our CNN-based method was able to utilize the additional information captured by FluorIS to 
significantly improve the annotation accuracy compared to methods which only utilized the reflectance images6. 
This demonstrates that (1) fluorescence signatures contain information that can be directly related to the taxo-
nomic identity of the benthos, and that (2) such signatures can be captured during reef surveys in conjunction 

Figure 1.  Three registered image pairs. (Left) Reflectance images, (Center) FluorIS images. (Right) Pixel-wise 
average of the reflectance and fluorescence images, visually demonstrating the advantage of combining the two 
information sources. The fluorescence increases the contrast of the corals, and the reflectance gives context and 
information on the non-fluorescing substrates. The registration quality is evident from this average. A high 
resolution version of this figure is available as supplementary information.
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with reflectance information. In addition, improved automated annotation accuracy can enable more extensive 
spatial and temporal studies by reducing the need for costly manual annotation and verification9.

Results
Analysis of image intensities.  Overall classification accuracy using only image intensities (colors) 
was similar for the reflectance channels (76.9 ±  1.2%, [mean ±  SE, n =  70]), and the fluorescence channels 
(77.5 ±  1.4%), Fig. 2a. However, there were differences in what categories that were accurately identified. The 
reflectance image intensities mostly allowed for accurate discrimination between bare-substrate and ‘unknown’, 
while the fluorescence image intensities allowed for discrimination between bare-substrate and live coral genera 
(Fig. 3). Indeed, the accuracy of classifying coral vs. other using the fluorescence channels was 88.3 ±  0.7%, but 
only 83.1 ±  0.9% for the reflectance channels (Fig. 2b).

The single most informative color channel was the green channel from FluorIS , which achieved 77.2 ±  1.4% 
overall accuracy, mostly due to a 65% recall for the dominant coral general, Faciidae (Figs 2a and 3). In contrast, 

Figure 2.  Classification accuracy based on image intensities. Results displayed as mean ±  SE for (a) the full 
10-category label-set and (b) coral vs. other. REF denotes the reflectance camera, FLR the fluorescence camera, 
and R, G, B denote the red, green and blue color channel respectively. The black rightmost bar indicate the 
accuracy of using FLR R+ G together with REF R+ G+ B.

Figure 3.  Confusion matrices for classification using image intensities. Numbers given on row r and column 
c are the probability of classifying category r as category c, and the total number of samples in each category is 
given on the right. The values along the diagonal indicate the recall of each category. REF denotes the reflectance 
camera, FLR the fluorescence camera, and R, G, B denote the red, green and blue color channel respectively. The 
blue dash-dotted lines separate the hard-corals from the other substrates.



www.nature.com/scientificreports/

4Scientific Reports | 6:23166 | DOI: 10.1038/srep23166

the red channel, which was the most informative among the reflectance channels, achieved 70.7 ±  1.4% overall 
accuracy, mostly due to 58% recall for the ‘unknown’ category (Figs 2a and 3).

The annotation accuracy using all five channels was higher than the reflectance or fluorescence alone, achiev-
ing 82.2 ±  1.2% overall accuracy and 91.0 ±  0.5% accuracy of classifying coral vs. other (Fig. 2).

Automated annotation using convolutional neural networks.  While the results in the previous sec-
tion were useful to understand the discriminatory information associated with the image intensities (colors), a 
reliable automated annotation method needs also to take into account texture and context in order to make more 
accurate annotation decisions6.

The overall annotation accuracy of f REF, the CNN which used the reflectance images only, was 87.8 ±  1.1% 
(mean ±  SE, n =  70; Fig. 4). This was lower than the 90.5 ±  0.8% accuracy of f JOINT, which used information from 
both images (p <  0.0001, n =  70). This accuracy increase is equivalent to an error-rate reduction by 2.7% (from 
12.2% for f REF to 9.5% for f JOINT), which is a 22% relative reduction in error-rate, meaning that approximately one 
in five annotation errors were corrected by incorporating fluorescence information. The increase in performance 
was particularly large for coral genera Platygyra and Acropora, and for the hydrozoan genus Millepora, where the 
classification recall increased 38%, 33%, and 41%, respectively, which is a relative increase of 512%, 100% and 86% 
respectively from f REF (Figs 4 and 5).

The overall accuracy of f FLR (85.5 ±  1.2%), which used the fluorescence images only, was lower than f REF 
(p =  0.0002, n =  70), but higher on several important benthic substrates: Platygyra, Acropora, and Millepora 
(Figs 4 and 5). In addition, for Pocillopora, and Faviidae, the f FLR network, while less accurate than f REF, provided 
complementary information that the joint f JOINT classifier utilized to outperform f REF (Figs 4 and 5). These find-
ings support our main hypothesis that fluorescent information can improve the accuracy of automated annota-
tion methods.

Training a five-channel network.  While CNNs are commonly used to model color or gray scale images, a 
CNN can operate on any number of channels31. Since the reflectance and FluorIS images are registered, they can 
be viewed as five-channel images, which offers a compelling opportunity to train a five-channel network directly 
on all the information from the image-pairs.

We trained a CNN, f FIVE directly on the annotated images of the training-set, and evaluated the accuracy, as 
described previously, on the test-set. This method directly incorporates both image types without the need for a 
subsequent second-stage classifier. The accuracy of f FIVE was 88.9 ±  1.1% (mean ±  SE, n =  70), which was higher 
than the 87.8 ±  1.1% accuracy of f REF (p <  0.0001), but lower than the 90.5 ±  0.8% accuracy of f JOINT (p =  0.0029, 
n =  70).

Comparison to traditional automated annotation methods.  This work is the first to utilize CNNs 
for automated annotation of benthic survey images. It was therefore critical to determine how the accuracy of 
CNNs relate to more traditional methods based on hand-tuned filter or color descriptors explicitly designed for 
automated annotation of reflectance images6,19–21. Such methods commonly report accuracies of around 
70–80%19,20; however, this is highly dependent on the data-set on which they are evaluated9,21. For this reason, we 
used the toolbox of Beijbom et al.6, which is publicly available (vision.ucsd.edu/content/moorea-labeled-corals), 
as a representative for the ‘traditional methods’, to compare the efficacy of such methods against the CNNs used 
in this work. The method of Beijbom et al.6 encodes image color and texture using a pre-defined set of image fil-
ters, and then uses a Support Vector Machine to learn models for each class. This method, denoted Cg  with the 
super-script indicating the image-type (REF or FLR), was trained and evaluated on the same training-set and 
test-set used throughout this work. The accuracy of g REF was 87.7 ±  0.7% (mean ±  SE, n =  70), which was not 

Figure 4.  Confusion matrices for the proposed convolutional neural network method using information 
from (left) the reflectance camera, (middle) the FluorIS camera, and (right) both cameras. Numbers given 
on row r and column c are classification recalls, i.e. the probability of classifying category r as category c, and the 
total number of samples in each category is given on the right. The values along the diagonal indicate the recall 
of each category. The blue dash-dotted lines separate the hard-corals from the other substrates.
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different from the 87.8 ±  1.1% accuracy of f REF (p =  0.22, n =  70). When trained on the FluorIS images, the tradi-
tional method, g FLR achieved 81.0 ±  0.9% accuracy, which was lower than the 85.5 ±  1.2% accuracy achieved by 
the proposed CNN-based method, f FLR (p <  0.0001).

Discussion
We have demonstrated that fluorescence information can be captured during an image-based benthic reef survey 
and utilized to improve the annotation accuracy of automated annotation methods. Our work is novel from three 
key perspectives. First, we used fluorescence information to improve the classification accuracy of the dominant 
benthic categories by 2.7%, which is equivalent to a 22% relative reduction of error-rate. In contrast to previous 
work that investigated the use of fluorescence spectra to classify groups defined by their level of bleaching23, 
fluorescence signatures27,32, or other physiological states24,33,34, our work provides evidence that the fluorescence 
signatures can be directly related to benthic taxonomy. Second, most work on coral fluorescence has relied on 
relatively expensive spectrometers or custom multi-spectral cameras which have high spectral but limited spatial 
resolution27,32. In contrast, we use an inexpensive, modified consumer camera, the FluorIS, which has high spatial 
resolution but only two spectral channels. The high spatial resolution and sensitivity of FluorIS enables deploy-
ment alongside a reflectance camera for regular benthic surveys. Third, we are the first, to the best of our knowl-
edge, to use CNNs for automated annotation of joint fluorescence and reflectance image data. We believe this type 
of method can be applied to other ecological applications deploying multi-spectral or multi-modal cameras, e.g. 
vegetation monitoring35, inter-tidal landscapes36, or plant health for agronomic applications37.

The utility of the fluorescent information depended on the substrate class. Different coral species have differ-
ent types of fluorescence proteins (FPs) and some species are more fluorescent than others22,38,39. In our study the 
fluorescence data was most helpful for improving the classification accuracy of the highly fluorescent coral genera 
Platygyra and Acropora, as well as for the hydrozoan Millepora. For these genera, the classification recall improved 
by 38%, 33% and 41% respectively (Fig. 4). We expect that including fluorescent information will increase the 
automated annotation accuracy of most coral reef surveys in areas with a large number of highly fluorescence 
species and in benthic surveys with a variety of fluorescent organisms (e.g. various algae species, diverse cor-
als and other invertebrates). We also hypothesize that fluorescent information might assist in distinguishing 
between different types of algae that can be challenging to distinguish using automated annotation methods such 
as turf algae and CCA9; but additional studies will need to be performed in order to verify this hypothesis. Salih  
et al.33 carried out a survey of the distribution of fluorescent corals on the Great Barrier Reef and found that 124 
species from 56 genera contained fluorescent morphs, suggesting that fluorescence should be a highly successful 
factor for improving annotation accuracy on coral reefs. However, they also found that within a given species 
there were often fluorescent and non-fluorescent morphs growing side by side. This fluorescence polymorphism 
within a coral species could explain why the fluorescence information did not improve the annotation accuracy 
further, and raises interesting ecological questions not explored here. Salih et al.33 also found that the highest 
number of fluorescent morphs occurred at the shallowest sites, and suggested that fluorescent pigments could 
have photo-protective properties. On the other hand, widespread, bright, and spectrally diverse coral fluorescence 
in meso-photic habitats40 may imply other properties of fluorescence pigments. Future work should explore the 

Figure 5.  Precision vs. recall curves for f REF, f FLR, and f JOINT. For each class, precision is defined as the 
proportion of correct classification among all samples classified as that class, and recall is defined as the 
proportion of correct classification among all samples from that class. The curves were created by varying the 
classification threshold for each class.
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utility of fluorescence information for improving automated annotations at different depths, in different reef 
locations, and across different benthic habitats.

Furthermore, our experiments have indicated the importance of careful registration of the image pairs. This 
is supported by the stronger results of the joint classifier, f JOINT, which merged the information on the patch-level, 
compared to the five-channel network, f FIVE, which merged the information on the pixel-level. We believe that 
this difference in accuracy was an effect of the registration quality. As shown in Figs. 1 and 6, the registration 
was good, but not perfect. Had it been perfect, with every pixel of the two images corresponding, we believe the 
f FIVE network would have done better, as it had direct access to all image information. Also, in our experiments, 
when the registration was omitted, the joint classifier failed to outperform the accuracy of the f REF network. This 
emphasizes the importance of careful registration and the development of new imaging systems and protocols for 
registered image capture.

Higher accuracy of an automated annotation system can reduce the amount of expensive human effort 
required during image annotation9. Our results show that a 22% reduction in error-rate can be achieved by 
incorporating fluorescence information, which means that one fifth of the automated annotation errors can 
be corrected if fluorescence information is available. This suggests that it may be cost-effective to deploy a 
wide-field-of-view fluorescence imaging system with a reflectance camera during surveys, in order to reduce the 
human annotation time. However, we emphasize that the image collection utilized in this survey should be con-
sidered a first attempt at obtaining co-registered images, and that additional work is required to facilitate robust 
co-located image capture of fluorescence and reflectance images on a large scale. Ideally, the image-pairs should 

Figure 6.  Cropped patch-pairs from the data set. Six randomly selected pairs of patches from each class 
are cropped out from the annotated point locations. The left member of each pair is from the conventional 
reflectance camera and right member is from FluorIS . The dotted blue line separates the hard corals from other 
substrates. A high resolution version of this figure is available as supplementary information.
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be captured in a way that does not require a manual post-processing registration step. In addition, we previously 
showed that daytime fluorescence imaging is possible with the FlourIS using ambient light subtraction22. Future 
camera development that integrates reflectance and fluorescence channels in the same camera system together 
with automatic acquisition of an ambient light image would facilitate acquiring registered images at daytime.

We have also shown how to utilize CNNs for automated annotation of benthic survey images. To contextualize 
our results, we compared the efficacy of the CNNs against the method of Beijbom et al.6. This comparison showed 
that the CNNs performed on par with the method of Beijbom et al.6 on the reflectance images, but that it more 
effectively utilized the fluorescence information. These results were not surprising. Traditional automated anno-
tation methods, such as that of Beijbom et al.6, were optimized on reflectance images, and could be expected to 
perform well on such images. However, the FluorIS images were of a different character both in terms of contrast 
and texture. For example, as we have shown, the FlourIS image intensities were more effective in discriminating 
between coral and non-corals than the reflectance image intensities. Therefore, traditional automated annotation 
methods, which were not designed for fluorescence imagery, perform poorly. CNNs, in contrast, were able to 
adapt and learn directly from this new type of data.

Methods
Image Collection.  Co-located image-pairs were captured during nighttime in the shallow reefs adjacent 
to the Interuniversity Institute for Marine Sciences in Eilat, Israel. Nighttime deployments were used due to the 
higher effectiveness of the fluorescence imaging system22 and the logistical ease of night diving in Eilat. Image 
locations were chosen randomly along a 3–15 m depth gradient. A custom-made framer was used that enabled 
rapid attachment and release of the imaging systems including the cameras and strobes (Fig. 7). To capture co-lo-
cated image-pairs, the framer was carefully placed on the ocean floor and remained there while the cameras 
where docked, one after the other, so that the two images had the same field of view and viewing angle. Once both 
images were captured, the framer was moved to the next location. At each location, reflectance and fluorescent 
images were thus taken, each covering 50 ×  70 cm of the benthos. Using this methodology, 212 image-pairs were 
collected during three dives, each approximately one hour long. The quality of the high-resolution images was 
sufficient for identifying most of the corals to the genus level, with some identification to the species level. All 
images and annotations used in this work is made publicly available at doi:10.5061/dryad.t4362.

For both reflectance and fluorescence imaging, the camera system comprised a Canon 5D Mark II professional 
grade off-the-shelf camera with a Sigma 20 mm wide-angle lens, and a Sea&Sea underwater housing with the 
Fisheye Dome Port 240, fitted with a 40 mm extension ring for better alignment of the dome port with the lens 
to reduce distortions. For fluorescence imaging, we used the Fluorescence Imaging System (FluorIS) which we 
developed in previous work22. In the FluorIS , the infrared filter on the camera sensor was removed for increased 
sensitivity to red fluorescence (chlorophyll-a emission). In addition, a yellow Tiffen #12 barrier filter was mounted 
on the camera lens, and blue NightSea excitation filters were mounted on the strobes as previously described22. As 
the modified FluorIS camera had an expanded spectral range in the long wavelengths, an additional filter (Schott 
BG39) was used for the strobes to block IR wavelengths that pass through the primary excitation filter. The fluo-
rescence images were captured with camera settings at or around: 1/200 s, f/8.0, and ISO 800. Refer to22 for more 
details on the FluorIS including excitation spectra.

The reflectance camera system was deployed with two Ikelite DS161 (guide number 24) strobes while the 
FluorIS system used two Sea&Sea YS250s (guide number 32) and two Inon Z240s (guide number 24) to maximize 
the fluorescence signal. The reflectance images were captured with camera settings at or around: 1/200 s, f/8.0, 
and ISO 180.

Post-processing.  Using the custom framer, co-registered images were captured (Fig. 1). However, there were 
some minor registration issues due to slight framer movements. To ensure a high-quality registration, we there-
fore applied a post-processing registration step. In this step, four to ten corresponding points were hand-clicked 

Figure 7.  Image collection procedure. Two research divers first positioned a custom framer which has a 
docking system for the cameras (a). The FluorIS image was captured (b). The FluorIS camera with its four 
strobes was un-docked and removed from the framer (c). Finally, the reflectance camera was docked to the 
framer and a co-located reflectance image captured (Not shown). Using this procedure the two images have the 
same field-of-view and viewing angle.
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in all image-pairs, and an affine image warp was applied using the imtransform command from the MATLAB 
Image Processing Toolbox (The MathWorks, Inc).

Image annotation of the reflectance images was performed by trained coral ecology experts (co-authors: AK, 
GE, and DIK) with knowledge of the local ecosystem. In this procedure, the substrate under 200 random point 
locations in each image was assigned one of ten pre-defined labels using the point-annotation tool of CoralNet 
(coralnet.ucsd.edu). The label-set included the five dominant coral genera: Faviidae, Stylophora, Platygyra, 
Acropora and Pocillopora; and non-coral labels for bare-substrate and colonial hydrozoans Millepora. The label-set 
also included ‘unknown’, which was used when identification was not possible (e.g. for dark image areas), as well 
as ‘other hard-coral’ and ‘other invertebrates’. A ‘macroalgae’ label was used during annotation, but was excluded 
from the subsequent analysis since it was exceedingly rare (< 0.03%). The bare-substrate label included crustose 
coralline algae (CCA) and turf-algae since the distinction between these substrates was difficult, and sometimes 
not possible. A histogram of the number of annotations per category is shown in Fig. 8 and example patches from 
each of the labels are shown in Fig. 6. Since our goal was to evaluate the utility of fluorescence information for 
automated annotation, the “ground truth” was the human expert annotations of reflectance images, which is the 
standard used in previous studies6,21. Therefore, fluorescence images were not used during the manual annotation 
process. To verify the accuracy of the human expert, 1500 point annotations across 30 images were repeated by 
a second expert. A comparison of the two sets of manual annotations indicated excellent agreement (97.8%) 
between the two experts.

Automated Annotation.  For the purpose of method evaluation, 212 annotated image-pairs were divided 
into two sets. The training-set comprised 142 randomly selected image-pairs, and was used to train the automated 
annotation methods. The test-set comprised the remaining 70 image-pairs and was used to evaluate the annota-
tion methods. With 200 point annotations per image, the training-set contained 28,400 point annotations, and 
the test-set contained 14,000.

Discriminatory information in reflectance and fluorescence imagery.  Before seeking to incorpo-
rate fluorescence information into an automated annotation system, we first wanted to verify that fluorescence 
image intensities indeed contain discriminatory information. Since benthic substrates lack distinct outlines, and 
since colors often change too much with the underwater conditions to be relied upon for classification6,21, auto-
mated annotation methods chiefly rely on textural cues6,21. On the other hand, fluorescent spectra have been 
shown to contain information that distinguishes between benthic substrates,32 which suggests that the colors 
(i.e. image intensities) of the fluorescence images can be used directly as predictive information in an automated 
annotation method. To determine whether fluorescence intensity provides useful discriminatory information, we 
conducted the following experiment.

Image intensities at the labeled locations were extracted from the training-set and used to train Support Vector 
Machine (SVM). We use a kernelized SVM with a Radial Basis Function kernel, as implemented in the LIBSVM 
software package41. A separate SVM was trained for each set of color channels, e.g. the red channel of the reflec-
tance camera, or the red and green channels of the fluorescence camera. Hyper-parameters of the SVM were 
chosen by cross-validation on the training-set for each set of channels according to standard protocol41. The 
trained SVM was then used to predict labels on the images in the test-set. Finally, the predicted labels were com-
pared to the ground-truth labels provided by the human expert in order to determine the classification accuracy 
for each set of image channels. Accuracy was evaluated both for the whole 10-category label-set and for a binary 
classification task: coral vs. other, where all hard-coral categories were merged to a generic ‘coral’ category and all 
remaining categories were merged to a generic ‘other’ category in post-processing.

Automated annotation using convolutional neural networks.  Our proposed automated annotation 
system used CNNs28. CNNs are commonly trained on color or gray-scale images, i.e., with one or three image 
channels29. The registered reflectance and FluorIS images collected in this work, however, have five channels of 

Figure 8.  Histogram of point annotation counts across the 212 image-pairs. The y-axis is truncated at 2000 
to ensure sufficient resolution for the rare labels, and the numbers overlaid the two leftmost bars indicate the 
actual height of those bars. The total number of annotated points is 42,400.
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information (the FluorIS blue channel does not contain any information as it is filtered out22). We investigated 
two approaches for utilizing CNNs on this data. The first was to train a CNN directly using the five-channel infor-
mation, and the second was to train two separate CNNs, one on each image type, and then train a second-stage 
classifier to consolidate the output of the two networks. In our experiments, the second approach was more effec-
tive and we focused our method development on this.

We used Caffe31, an open-source framework for training the CNNs. Specifically, we used the publicly available 
cifar10 network structure (caffe.berkeleyvision.org), which is designed to learn from 32 ×  32 pixels images. The 
cifar10 network comprises three rounds of consecutive convolutions, pooling and non-linear rectification layers, 
and all network parameters are learned directly from the training-set through back-propagation42. For each of the 
200 annotated point locations in the training-set images, a centered 128 ×  128 pixel patch was cropped out, and 
re-sized to 32 ×  32 pixels. Rotated (by 0, 90, 180 and 270 degrees) and mirrored versions of each cropped patch 
were included in the training data in order to prevent over-fitting (Fig. 9)29,30. Using this data-preparation proce-
dure, two networks were trained. Denoting ∈ × × Cq 32 32  as an image patch with channels C, and by ∈s 10 a 
vector of classification scores for each of the 10 categories in the label-set, the networks can be written as a map-
ping →Cf q s: . Classification of a new patch, q∗, from the test-set was done by assigning the class, y, correspond-
ing to the largest score:

=⁎ ⁎Cs f q( ) (1)

= …⁎ ⁎y s sargmax[ , , ] (2)1 10

f REF represents the network trained on the reflectance images, and f FLR , the network trained on the FluorIS pho-
tos. To consolidate the information from the two networks a second-stage classifier was used that mapped the 
concatenated network scores to class labels. To create this second-stage classifier, all image patches were propa-
gated through the networks after training. This generated two, 10-dimensional score vectors for each patch (one 
for each network and image type). The score vectors were then concatenated to a 20-dimensional joint score vec-
tor for each patch, which encoded information from both the reflectance and fluorescence images. The joint score 
vectors pertaining to the training-set were used to train a linear Support Vector Machine43, which was then used 
to predict the labels of the patches in the test-set. This second stage classifier was denoted f JOINT, and is described 
in more detail below. Using a NVIDIA Tesla K40 GPU, the full network was trained in approximately 5 hours, and 
prediction took less than 1 second per image.

Statistical analysis.  A Wilcoxon signed-rank test was used to test the hypothesis that the annotation accu-
racy of f JOINT was higher than the f REF network. In other words, we examined whether the information from 
the FluorIS images improved annotation accuracy compared to using reflectance images alone. The accuracy 
was calculated for each image in the test-set as the ratio of correctly classified point-locations, where “correctly” 
is defined as agreeing with the human expert. Let aJOINT(i) be the accuracy of f JOINT for image i, and a(REF)(i) 
the accuracy of fREF for the same image. The paired annotation accuracy differences were then calculated as 
d(i) =  aJOINT(i) −  aREF(i), and d was used to perform the Wilcoxon signed-rank test. Following standard notation, 
we let p denotes the likelihood that the null hypothesis is true, and n the sample size. All tests were evaluated at the 
95% confidence level, meaning that differences were considered significant for tests where p <  0.05.
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